Progress on Electrospun Composite Fibers Incorporating Bioactive Glass: An Overview

نویسندگان

چکیده

Electrospinning is a promising approach for the development of fibrous tissue engineering (TE) scaffolds suitable hard and soft tissues. Apart from physicomechanical properties, electrospun fibers are required to incorporate bioactive cues control cellular functions, including facilitating biomineralization osteogenic differentiation in case bone TE, as well vascularization, support successful regeneration. In recent years, glass (BG) addition biopolymer has shown results enhancing properties fibers, improvement biological performance. this article, comprehensive overview BG‐containing polymer composite presented, identifying parameters that affect mechanical response vivo vitro. Subsequently, effects BG on discussed. Recent developments fields regeneration, wound healing, drug delivery using described detail. Essential aspects related BG‐polymer translational research TE highlighted future field.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication, Characterization and Process Parameters Optimization of Electrospun 58S Bioactive Glass Submicron Fibers

Over the past decades, bioactive glass (BG) has been of a great interest in the bone regeneration field, due to its excellent biocompatibility, bioactivity and osteoconductivity. Herein, fabrication of bioactive glass as one-dimensional fibers by employing an Electrospinning process is reported. The Sol-Gel method was chosen considering the final fibers smoothness and homogeneity. Starting sol ...

متن کامل

Electrospun Composite Liquid Crystal Elastomer Fibers

We present a robust method to prepare thin oriented nematic liquid crystalline elastomer-polymer (LCE-polymer) core-sheath fibers. An electrospinning setup is utilized to spin a single solution of photo-crosslinkable low molecular weight reactive mesogens and a support polymer to form the coaxial LCE-polymer fibers, where the support polymer forms the sheath via in situ phase separation as the ...

متن کامل

The Effect of Exposed Glass Fibers and Particles of Bioactive Glass on the Surface Wettability of Composite Implants

Measurement of the wettability of a material is a predictive index of cytocompatibility. This study was designed to evaluate the effect of exposed E-glass fibers and bioactive glass (BAG) particles on the surface wettability behavior of composite implants. Two different groups were investigated: (a) fiber reinforced composites (FRCs) with different fiber orientations and (b) polymer composites ...

متن کامل

Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM's major co...

متن کامل

Electrospun Fibers in Composite Materials for Medical Applications

The development of nanoscaled materials has deserved a remarkable interest for biomedical applications. Biological tissues are essentially composite materials with particular mechanical properties that should be carefully considered during the design of innovative biomedical scaffolds. Electrospun membranes are often found in medical applications due to its high specific surface which creates a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Engineering Materials

سال: 2023

ISSN: ['1527-2648', '1438-1656']

DOI: https://doi.org/10.1002/adem.202201103